魏长东

weichangdong

编写高性能的Lua代码

使用Local

在代码运行前,Lua会把源码预编译成一种中间码,类似于Java的虚拟机。这种格式然后会通过C的解释器进行解释,整个过程其实就是通过一个 while循环,里面有很多的 switch...case语句,一个 case对应一条指令来解析。

自Lua 5.0之后,Lua采用了一种类似于寄存器的虚拟机模式。Lua用 来储存其寄存器。每一个活动的函数,Lua都会其分配一个栈,这个栈用来储存函数里的活动记录。每一个函数的栈都可以储存至多250个寄存器,因为栈的长度是用8个比特表示的。

有了这么多的寄存器,Lua的预编译器能把所有的local变量储存在其中。这就使得Lua在获取local变量时其效率十分的高。

举个栗子: 假设a和b为local变量, a = a + b的预编译会产生一条指令:

;a是寄存器0 b是寄存器1
ADD 0 0 1

但是若a和b都没有声明为local变量,则预编译会产生如下指令:

GETGLOBAL    0 0    ;get a
GETGLOBAL    1 1    ;get b
ADD          0 0 1  ;do add
SETGLOBAL    0 0    ;set a

所以你懂的:在写Lua代码时, 你应该尽量使用local变量

以下是几个对比测试,你可以复制代码到你的编辑器中,进行测试。

a = os.clock()
for i = 1,10000000 do
  local x = math.sin(i)
end
b = os.clock()
print(b-a) -- 1.113454

把math.sin赋给local变量sin:

a = os.clock()
local sin = math.sin
for i = 1,10000000 do
  local x = sin(i)
end
b = os.clock()
print(b-a) --0.75951

直接使用 math.sin,耗时1.11秒;使用local变量 sin来保存 math.sin,耗时0.76秒。可以获得30%的效率提升!

关于表(table)

表在Lua中使用十分频繁,因为表几乎代替了Lua的所有容器。所以快速了解一下Lua底层是如何实现表,对我们编写Lua代码是有好处的。

Lua的表分为两个部分:数组(array)部分和哈希(hash)部分。数组部分包含所有从1到n的整数键,其他的所有键都储存在哈希部分中。

哈希部分其实就是一个哈希表,哈希表本质是一个数组,它利用哈希算法将键转化为数组下标,若下标有冲突(即同一个下标对应了两个不同的键),则它会将冲突的下标上创建一个 链表,将不同的键串在这个链表上,这种解决冲突的方法叫做:链地址法。

当我们把一个新键值赋给表时,若数组和哈希表已经满了,则会触发一个再哈希(rehash)。再哈希的代价是高昂的。首先会在内存中分配一个新的长度的数组,然后将所有记录再全部哈希一遍,将原来的记录转移到新数组中。新哈希表的长度是最接近于所有元素数目的2的乘方。

当创建一个空表时,数组和哈希部分的长度都将初始化为0,即不会为它们初始化任何数组。让我们来看下执行下面这段代码时在Lua中发生了什么:

local a = {}
for i=1,3 do
    a[i] = true
end

最开始,Lua创建了一个空表a,在第一次迭代中, a[1] = true触发了一次rehash,Lua将数组部分的长度设置为 2^0,即1,哈希部分仍为空。在第二次迭代中, a[2] = true再次触发了rehash,将数组部分长度设为 2^1,即2。最后一次迭代,又触发了一次rehash,将数组部分长度设为 2^2,即4。

下面这段代码:

a = {}
a.x = 1; a.y = 2; a.z = 3

与上一段代码类似,只是其触发了三次表中哈希部分的rehash而已。

只有三个元素的表,会执行三次rehash;然而有一百万个元素的表仅仅只会执行20次rehash而已,因为 2^20 = 1048576 > 1000000。但是,如果你创建了非常多的长度很小的表(比如坐标点: point = {x=0,y=0}),这可能会造成巨大的影响。

如果你有很多非常多的很小的表需要创建时,你可以将其初始化以避免rehash。比如: {true,true,true},Lua知道这个表有三个元素,所以Lua直接创建了三个元素长度的数组。类似的, {x=1, y=2, z=3},Lua会在其哈希部分中创建长度为4的数组。

以下代码执行时间为1.53秒:

a = os.clock()
for i = 1,2000000 do
    local a = {}
    a[1] = 1; a[2] = 2; a[3] = 3
end
b = os.clock()
print(b-a)  --1.528293

如果我们在创建表的时候就规定好它的大小,则只需要0.75秒:

a = os.clock()
for i = 1,2000000 do
    local a = {1,1,1}
    a[1] = 1; a[2] = 2; a[3] = 3
end
b = os.clock()
print(b-a)  --0.746453

所以, 当需要创建非常多的小size的表时,预先填充好表的大小

关于字符串

与其他主流脚本语言不同的是,Lua在实现字符串类型有两方面不同。

第一,所有的字符串在Lua中都只储存一份拷贝。当新字符串出现时,Lua检查是否有其相同的拷贝,若没有则创建它,否则,指向这个拷贝。这可以使得字符串比较和表索引变得相当的快,因为比较字符串只需要检查引用是否一致即可;但是这也降低了创建字符串时的效率,因为Lua需要去查找比较一遍。

第二,所有的字符串变量,只保存字符串引用,而不保存它的buffer。这使得字符串的赋值变得十分高效。例如在Perl中, $x = $y,会将$y的buffer整个的复制到$x的buffer中,当字符串很长时,这个操作的代价将十分昂贵。而在Lua,同样的赋值,只复制引用,十分的高效。

但是只保存引用会降低在字符串连接时的速度。在Perl中, $s = $s . 'x'和 $s .= 'x'的效率差距惊人。前者,将会获取整个$s的拷贝,并将’x’添加到它的末尾;而后者,将直接将’x’插入到$x的buffer末尾。

由于后者不需要进行拷贝,所以其效率和$s的长度无关。

在Lua中,并不支持第二种更快的操作。以下代码将花费6.65秒:

a = os.clock()
local s = ''
for i = 1,300000 do
    s = s .. 'a'
end
b = os.clock()
print(b-a)  --6.649481

我们可以用table来模拟buffer,下面的代码只需花费0.72秒,9倍多的效率提升:

a = os.clock()
local s = ''
local t = {}
for i = 1,300000 do
    t[#t + 1] = 'a'
end
s = table.concat( t, '')
b = os.clock()
print(b-a)  --0.07178

所以: 在大字符串连接中,我们应避免 ..。应用table来模拟buffer,然后concat得到最终字符串

3R原则

3R原则(the rules of 3R)是:减量化(reducing),再利用(reusing)和再循环(recycling)三种原则的简称。

3R原则本是循环经济和环保的原则,但是其同样适用于Lua。

Reducing

有许多办法能够避免创建新对象和节约内存。例如:如果你的程序中使用了太多的表,你可以考虑换一种数据结构来表示。

举个栗子。 假设你的程序中有多边形这个类型,你用一个表来储存多边形的顶点:

polyline = {
    { x = 1.1, y = 2.9 },
    { x = 1.1, y = 3.7 },
    { x = 4.6, y = 5.2 },
    ...
}

以上的数据结构十分自然,便于理解。但是每一个顶点都需要一个哈希部分来储存。如果放置在数组部分中,则会减少内存的占用:

polyline = {
    { 1.1, 2.9 },
    { 1.1, 3.7 },
    { 4.6, 5.2 },
    ...
}

一百万个顶点时,内存将会由95KB减少到65KB,但是代价是代码的可读性降低了。

最变态的方法是:

polyline = {
    x = {1.1, 1.1, 4.6, ...},
    y = {2.9, 3.7, 5.2, ...}
}

一百万个顶点,内存将只占用24KB,你需要在性能和代码可读性之间做出取舍。

在循环中,我们更需要注意实例的创建。

for i=1,n do
    local t = {1,2,3,'hi'}
    --执行逻辑,但t不更改
    ...
end

我们应该把在循环中不变的东西放到循环外来创建:

local t = {1,2,3,'hi'}
for i=1,n do
    --执行逻辑,但t不更改
    ...
end

Reusing

如果无法避免创建新对象,我们需要考虑重用旧对象。

考虑下面这段代码:

local t = {}
for i = 1970, 2000 do
    t[i] = os.time({year = i, month = 6, day = 14})
end

在每次循环迭代中,都会创建一个新表 {year = i, month = 6, day = 14},但是只有 year是变量。

下面这段代码重用了表:

local t = {}
local aux = {year = nil, month = 6, day = 14}
for i = 1970, 2000 do
    aux.year = i;
    t[i] = os.time(aux)
end

另一种方式的重用,则是在于缓存之前计算的内容,以避免后续的重复计算。后续遇到相同的情况时,则可以直接查表取出。这种方式实际就是 动态规划效率高的原因所在,其本质是用空间换时间。

Recycling

Lua自带垃圾回收器,所以我们一般不需要考虑垃圾回收的问题。

了解Lua的垃圾回收能使得我们编程的自由度更大。

Lua的垃圾回收器是一个增量运行的机制。即回收分成许多小步骤(增量的)来进行。

频繁的垃圾回收可能会降低程序的运行效率。

我们可以通过Lua的 collectgarbage函数来控制垃圾回收器。

collectgarbage函数提供了多项功能:停止垃圾回收,重启垃圾回收,强制执行一次回收循环,强制执行一步垃圾回收,获取Lua占用的内存,以及两个影响垃圾回收频率和步幅的参数。

对于批处理的Lua程序来说,停止垃圾回收 collectgarbage("stop")会提高效率,因为批处理程序在结束时,内存将全部被释放。

对于垃圾回收器的步幅来说,实际上很难一概而论。更快幅度的垃圾回收会消耗更多CPU,但会释放更多内存,从而也降低了CPU的分页时间。只有小心的试验,我们才知道哪种方式更适合。

结语

我们应该在写代码时,按照高标准去写,尽量避免在事后进行优化。

如果真的有性能问题,我们需要用工具量化效率,找到瓶颈,然后针对其优化。当然优化过后需要再次测量,查看是否优化成功。

在优化中,我们会面临很多选择:代码可读性和运行效率,CPU换内存,内存换CPU等等。需要根据实际情况进行不断试验,来找到最终的平衡点。

最后,有两个终极武器:

第一、使用 LuaJIT,LuaJIT可以使你在不修改代码的情况下获得平均约5倍的加速。查看LuaJIT在 x86/x64下的性能提升比

第二、将瓶颈部分用C/C++来写。因为Lua和C的天生近亲关系,使得Lua和C可以混合编程。但是C和Lua之间的通讯会抵消掉一部分C带来的优势。

注意:这两者并不是兼容的,你用C改写的Lua代码越多,LuaJIT所带来的优化幅度就越小。